
Metalevel Facilities for Multi-Language AOP

Éric Tanter
Center for Web Research, DCC, University of Chile

Avenida Blanco Encalada 2120, Santiago, Chile
etanter@dcc.uchile.cl

ABSTRACT
Providing metalevel facilities in object-oriented languages
has been studied and has resulted in the formulation of
a set of design principles advocating the use of mirror-
based reflective APIs. In this paper, we explore the provi-
sion of metalevel facilities in the context of aspect-oriented
programming, more precisely by considering multi-language
AOP: different aspect languages are available to program-
mers, in addition to the base object-oriented language. After
general design considerations, we discuss the concrete case
of Reflex, a versatile kernel for multi-language AOP in Java.

1. INTRODUCTION

1.1 Design Principles: Mirrors
In [2], Bracha and Ungar identify three design princi-

ples for reflection and metaprogramming facilities in object-
oriented languages:

encapsulation – metalevel facilities must encapsulate their
implementation behind interfaces1;

stratification – metalevel facilities must be separate from
base-level functionality;

ontological correspondence – the ontology of metalevel
facilities should correspond to the ontology of the lan-
guage they manipulate.

The authors show that mainstream reflective APIs
(e.g. that of Java, Smalltalk, C#) do not respect these prin-
ciples, while APIs based on mirrors do. Languages providing
mirror-based reflective APIs are Self [13] and Strongtalk [1].
The idea of mirrors is that metalevel facilities are exposed
by special objects called mirrors, rather than being accessed
from an object or class directly, as in the case in classical
reflective APIs:

Object o = ...;

Class c = o.getClass();

Class s = A.class.getSuperclass();

To ensure encapsulation and stratification, Bracha and
Ungar advocate the use of mirror factories. A mirror factory
is a central “function” to which mirrors are requested:

1Actually, the point is to rely on abstractions rather than
concrete implementations – therefore extensible high-level
classes are a valid alternative to interfaces.

ObjectMirror objM = MirrorFactory.reflect(obj);

ClassMirror clsM = ojbM.getClass();

ClassMirror sclsM = clsM.getSuperclass();

MethodMirror methM = sclsM.getMethod("foo");

The problem of classical reflective APIs is that clients are
dependent on the implementation details of the reflective
system they use. Conversely, with mirror factories, a specific
factory can be set according to the situation: it is therefore
possible to rely on different implementations of the reflective
API transparently. Furthermore, the stratification resulting
from the separation of metalevel facilities from base code
makes it easier to simply remove reflection support when
not used. Doing so can considerably reduce the footprint of
an application, for instance. Conversely, if a class that has
uses other than reflection holds certain reflective capabili-
ties, then it is hard to safely remove reflective capabilities
from the system [2].

Finally, ontological correspondence addresses the symbio-
sis between the reflective API and the language being re-
flected upon. It has two dimensions. Structural correspon-
dence states that the structure of metalevel facilities should
correspond to the structure of the language they manipu-
late. Such facilities ought to represent both code and com-
putation, and go as deep as within method bodies. Ideally,
reflective support should be conditional to what the VM sup-
ports and on-demand. Temporal correspondence states that
the metalevel APIs should be layered so as to distinguish
static and dynamic properties of the underlying language. In
other words, the distinction that a language makes between
code (compile time) and computation (run time) should be
manifest in the APIs.

The objective of this work is to study how the aforemen-
tioned principles can be applied in the context of aspect-
oriented languages, not only considering a unique language
with objects and aspects such as AspectJ [7], but rather
considering a context of multi-language AOP, whereby dif-
ferent (possibly domain-specific) aspect languages are used
in conjunction with a base object-oriented language.

1.2 Multi-Language AOP
In previous work [10, 11], we have motivated the interest

of being able to define and use different aspect languages,
including domain-specific ones, to modularize the different
concerns of a software system. We have proposed the ar-
chitecture of a so-called versatile kernel for multi-language
AOP, and our current Java implementation, Reflex.

An AOP kernel supports the core semantics of various AO
languages through proper structural and behavioral models.



Designers of aspect languages can experiment comfortably
and rapidly with an AOP kernel as a back-end, as it provides
a higher abstraction level for transformation than low-level
transformation toolkits. The abstraction level provided by
our kernel is a flexible model of partial behavioral reflec-
tion [12], extended with structural abilities. Furthermore, a
crucial role of an AOP kernel is that of a mediator between
different coexisting AO approaches: detecting interactions
between aspects, possibly written in different languages, and
providing expressive means for their resolution.

behavior structure

detection resolution

plugin architecture

transformation

composition

languages

Figure 1: Architecture of a versatile kernel for
multi-language AOP.

The architecture of an AOP kernel consists of three layers
(Fig. 1): a transformation layer in charge of basic weaving,
supporting both structural and behavioral modifications of
the base program; a composition layer, for detection and res-
olution of aspect interactions; a language layer, for modular
definition of aspect languages (as plugins).

It has to be noted that the transformation layer is not
necessarily implemented by a (byte)code transformation sys-
tem: it could very well be integrated directly in the language
interpreter (VM). As a matter of fact, the role of a versa-
tile AOP kernel is to complement traditional interpreters
of object-oriented languages. Therefore, the fact that our
implementation in Java, Reflex, is based on code transfor-
mation should be seen as an implementation detail, not a
defining characteristic of the kernel approach.

2. MIRRORS FOR MULTI-LANGUAGE
AOP

2.1 Languages Involved
There are different language layers that have to be taken

into account when considering multi-language AOP and the
corresponding metalevel facilities, as illustrated in Fig. 2:

• Aspect Languages (ALs) – These languages are de-
fined by aspect language providers, in order for pro-
grammers to be able to express their aspects at the
appropriate level of abstraction. Aspect languages can
be general purpose or domain specific.

• Kernel Language (KL) – The kernel language
makes it possible for providers of aspect languages to
express aspects in terms of common constructs. The
design of the kernel language actually determines the
actual degree of versatility of the kernel (i.e. the vari-
ability of aspect approaches that is supported);

• High-Level Language (HLL) – The high-level lan-
guage is the base (object-oriented) language that is
used to develop applications (e.g. Java).

• Virtual Machine Language (VML) – This lan-
guage is that natively understood by the execution
environment of the HLL (e.g. Java bytecode).

Bracha and Ungar motivate the need for explicitly sep-
arating VML and HLL when designing metalevel facili-
ties due to the possible discrepancies between both lan-
guages [2]. Such discrepancies typically appear when im-
plementing high-level constructs that are not directly sup-
ported by the VM. Notable examples in Java are nested
classes and generics, which are implemented with synthetic
entities that can unfortunately be observed via reflection.
Conversely, in Strongtalk [1], the mirror API is divided in
two parts: one reflecting Smalltalk, and one reflecting the
underlying structures in the VM. This paper does not ad-
dress the issue of providing metalevel facilities for VML, nor
does it go in details of HLL metalevel facilities; we rather
focus on KL and ALs, which are specific to multi-language
AOP.

Virtual Machine Language (VML)

High-Level 
Language (HLL)

AL 1

Kernel 
Language (KL)

AL 2 AL n...

kernel + VM

aspect 
languages

Figure 2: The different languages in multi-language
AOP.

2.2 Design Guidelines
We discuss design guidelines for reflective APIs in multi-

language AOP by analyzing the consequences of the prin-
ciples formulated in [2]. When it comes to examples, we
stick to an object-oriented HLL since its language concepts
are well-known (classes, methods, fields, etc.). We discuss
the application of the guidelines distilled in this section to
concrete KL and ALs in Section 3, when considering our
particular context (Java, Reflex).

2.2.1 Structural Correspondence
The principle of structural correspondence implies that

there should be distinct reflective APIs for each language
in a system. Therefore, in multi-language AOP, this means
that in addition to specific APIs for VML and HLL, the
kernel must offer a reflective API for KL, and that each
aspect language must be accompanied by its corresponding
reflective API.

Since the objective of a versatile AOP kernel is to support
a virtually infinite set of aspect languages, it is impossible
to design the corresponding reflective APIs in advance. At
most, a set of guidelines can be provided. This means that
the provider of an aspect language plugin must also provide
the associated reflective API. Designing languages in tandem
with reflection is indeed a healthy exercise: by definition,
a reflective API reifies the ontology of a language – if a
reflective API is too large and too complex, this can be seen
as an indication that the language itself is too large and too
complex [2].



2.2.2 Encapsulation and Stratification
Adopting a mirror-based design in order to respect the

principles of encapsulation and stratification implies that a
particular reflective API is provided as follows:

• a mirror factory gives access to mirror objects;

• mirror objects are handed out by their interface types,
not their actual implementation types;

• each concept of the language is reified as a mirror in-
terface.

Furthermore, we identify three responsibilities mirror in-
terfaces should endorse:

• expose the properties of the language concept they
reify, with possibly getters and setters (e.g. the name
or visibility of a class or method);

• make it possible to navigate in the language concepts
organization (e.g. extract methods of a class, extract
expressions of a method);

• potentially expose a number of actions that can be per-
formed on a language concept (e.g. instantiate a class,
invoke a method, insert code before an expression).

2.2.3 Temporal correspondence
Up to now, we have not taken into account the tempo-

ral correspondence principle: mirroring code and mirror-
ing computation should be separable modules of the mirror
API [2]. This is necessary because some concepts reified as
mirrors or actions available as methods on mirrors require
the existence of a running computation: e.g. a mirror to
an instance of a class, invoking a method or instantiating
a class. Hence these mirrors and methods would not make
sense in an “offline” use of the API (such as a graphical
introspector, like a class browser).

Technically, this separation can be achieved by providing
two distinct mirror factories: a code mirroring factory and a
computation mirroring factory. Each factory returns mirrors
implementing its own collections of interfaces. For instance,
a code mirroring factory would return a class mirror whose
interface does not include an invoke method; whereas the
class mirror returned by a computation mirroring factory
would support such a message.

In many cases, most (if not all) of the information avail-
able when reflecting upon code is also available when reflect-
ing upon computation. For instance, the name of a class or
the set of its methods are available from both a code view
and a computation view. One could therefore be tempted to
avoid repeating the code API in the computation API. How-
ever, doing so has a number of inconveniences: first, users of
runtime metalevel facilities would need to handle both APIs,
and this would typically require bridges from one world to
the other to be provided; second, it is frequent that although
the concepts of the code view are repeated in the compu-
tation view, the possible usages of properties and actions
differ. For instance, in Java, in a compile-time usage of the
reflective API, one expects to be able to have strong inter-
cession capabilities, such as changing the name of a class,
adding an interface and a bunch of methods to it, etc. Con-
versely, in a runtime usage, these intercession capabilities
may not be provided: in Java, if not running in debugging

code mirroring 
factory

fully-intercessive 
code mirror

fully-intercessive 
computation mirror

mostly-introspective 
computation mirror

computation mirroring 
factory

abstract mirror 
factory

Figure 3: An abstract mirror factory giving access
to one code mirroring factory (handing out fully-
intercessive mirrors), and two computation mirror-
ing factories: one for debugging, handing out fully-
intercessive mirrors, and one for standard execution,
handing out mostly-introspective mirrors.

mode, one cannot change the definition of a class; if running
in debugging mode, method bodies can be changed, but the
actual structure of a class cannot be changed (e.g. by adding
new fields).

2.2.4 Mirror Factories
Therefore, in order to respect the temporal correspon-

dence principle and support the variability associated to
code and computation, a metalevel API should be provided
by an abstract mirror factory for the language, which gives
access to both the code mirroring factory and the compu-
tation mirroring factory. Furthermore, each factory should
be self-contained, in the sense that a user need only interact
with a single factory. Note that there might be more than
two factories: two computation mirroring factories could be
provided, one corresponding to a debugging mode and one
for the standard running mode. As a rule of thumb, there
should be as many mirror factories as particular usage sce-
narios of metalevel facilities.

3. ILLUSTRATION IN REFLEX
We now discuss the application of the guidelines presented

above in the concrete context of Reflex, our versatile ker-
nel for multi-language AOP in Java [11]. We first give an
overview of Reflex, and then discuss the design of metalevel
facilities for Java, Reflex, and aspect languages (via two con-
crete examples). We end this section by identifying the need
for cross-language metalevel facilities.



3.1 Reflex in a Nutshell
Reflex is a portable library that extends Java with struc-

tural and behavioral reflective facilities. Behavioral reflec-
tion follows a model of partial behavioral reflection pre-
sented in [12]: the central notion is that of explicit links
binding a set of program points (a hookset) to a meta-
object. Reflex does not impose a specific metaobject pro-
tocol (MOP), but rather makes it easy to specify tailored
MOPs, which can coexist in a given application.

The aforementioned links are called behavioral links to dis-
tinguish them from structural links, which are used to per-
form structural reflection. The model for structural reflec-
tion is based on the class-object model of Javassist [4, 5]. A
structural link binds a set of classes to a metaobject, which
can both introspect and modify class definitions (including
method bodies).

Reflex is based on Javassist, and therefore operates on
bytecode at load time. The transformation process consists,
for each class being loaded, of determining and applying
first the set of structural links that apply to it, and then
the set of behavioral links. During installation of behav-
ioral links, hooks are inserted in class definitions at the ap-
propriate places in order to provoke reification at runtime,
following the metaobject protocol specified by each link.

3.2 Metalevel Facilities for Java (HLL)

3.2.1 Load-time Reflection
Java as such does not provide any metalevel facilities for

manipulating code outside of a running process. The Java
reflection API is dedicated to runtime. Javassist [5, 6] is a
well-known load-time MOP that complements Java in this
regard: one can reflect upon code, with full intercession abil-
ities; furthermore, although the actual transformations are
done on Java bytecode, the abstractions provided by the
API are at the source code level.

Previous versions of Reflex directly exposed Javassist enti-
ties to users. But as a matter of fact, the Javassist API is not
compliant with the design guidelines that mirror-based sys-
tems promote: reifications are exposed as their implemen-
tation classes (e.g. CtClass, CtMethod), not via interfaces.
This violation of the encapsulation principle became prob-
lematic to us at some point, because it made it impossible
to ensure structural correspondence appropriately, as will
be discussed in Section 3.3. As a consequence, we developed
another hierarchy of interfaces that completely hides the im-
plementation dependence on Javassist. Although this new
load-time MOP mainly offers the same services as Javassist,
it does respect the encapsulation principle: users manipulate
interface types, not implementation types.

3.2.2 Runtime Reflection
Java offers an API for runtime reflection, mainly restricted

to introspection. Beyond the fact that the possibilities of-
fered by this API are restricted, what is of concern to us
in this work is that the reflection API of Java does not fol-
low the design guidelines stated in [2]. First of all, the re-
flection API is not provided via interfaces but via concrete
implementation classes, thereby violating the principle of en-
capsulation. Second, access to reflective entities is provided
by base entities themselves (e.g. o.getClass()), hence com-
promising stratification. Furthermore, structural correspon-
dence is not ensured: using the reflection API, one can see

synthetic members (generated by the compiler), which are
not part of the actual source program, but rather reflect the
particular implementation strategy used by the compiler for
features that are not supported by the VM (generics, inner
classes, etc.).

In the context of Reflex, although we have not (yet) im-
plemented a complete mirror-based reflection API for Java,
we were led to do so at least for methods: Reflex includes an
interface Method (reflex.api.mop), whose usage is recom-
mended for implementors of metaobject protocols, instead
of the one from java.lang.reflect. We exploit this inter-
face in order to provide a consistent view of a reified method
in metaobjects in the face of implementation tricks. More
precisely, to support reification of the message receive oper-
ation, the well-known technique of method wrappers is used:
the method whose execution should be reified is renamed,
and a new method with the original name is added, whose
body is the hook to the metalevel [5]. The consequence of
this implementation strategy is that a single method is im-
plemented with two methods in Java: one with the original
signature but a synthetic body, and the other with a syn-
thetic signature but the original body.

Introducing an interface for reflecting upon methods
makes it possible to hide such implementation strategies:
synthetic elements are hidden to the programmer. The re-
sult is that the principle of structural correspondence is pre-
served. To generalize this approach, providing a full-fledged
mirror based reflection API for Java is necessary.

3.3 Metalevel Facilities for Reflex (KL)
A domain-specific language for using Reflex with a con-

crete syntax is currently being designed: until then, the only
means to configure Reflex is by using the metalevel facilities
of this not-yet-born language: the kernel API. The kernel
API makes it possible to define new links, either structural
or behavioral, or to introspect existing links. In order to
respect the principle of temporal correspondence, a differ-
ence is explicitly made in Reflex between the definition of a
link, which relies upon and lives at load time, and the run-
time representation of a link, which is used e.g. to access the
metaobject associated to a link.

3.3.1 Load-time Reflection
At link definition time, a link is represented by an object

of type BLink if it is a behavioral link, or SLink if it is a
structural link. Both BLink and SLink are interface types,
not implementation types: this respects the encapsulation
principle. Link objects are never created directly by the
programmer, rather they are obtained from a factory:

// obtain new link object from factory

BLink link = API.links().createBLink(...);

// set attributes

link.setScope(Scope.OBJECT); ...

// effectively define the link

API.links().addBLink(link);

The resulting flexibility of the design is being used in an
on-going experiment to extend Reflex to distributed sys-
tems: specific implementations of the link interfaces trans-
parently refer to remote links.



Link objects offer full introspective and intercessive abil-
ities. However, due to our implementation approach (byte-
code transformation), once a behavioral link is effectively
used for the first time, some of its intercessive abilities are
disabled. For instance, it is not possible to change the scope
of a link if some running objects are already affected by that
link: this restriction is made necessary because the scope at-
tribute of a link directly determines how a metaobject ref-
erence is implemented (instance variable, class variable, or
global). Note that a VM-based implementation of Reflex (or
an implementation in a language that fully allows runtime
bytecode transformation) could support full intercession on
links, even dynamically.

3.3.2 Runtime Reflection
At runtime, a reification of a link is provided via an object

implementing the RTLink interface. Only behavioral links
are reified, since structural links are applied at load time and
have no runtime existence (again, this restriction comes from
our implementation approach and will to remain portable in
the context of Java).

An object or class may be affected by several links. Fol-
lowing the design guidelines of mirror-based systems, one
can obtain a reification of the set of links that apply to a
given instance by a call to a factory:

Object o = ... ;

RTLink[] links = API.links().getLinksFor(o);

The reification of a behavioral link makes it possible to
dynamically access the metaobject associated to a link,
change its activation condition, or introspect its defini-
tion (via the corresponding BLink object, obtained with
getDefinition()):

Object o = ... ;

RTLink link = ... ;

// getting the metaobject for o

Metaobject mo = link.getMetaobject(o);

// setting a new metaobject for o

link.setMetaobject(o, new A());

// deactivating the link for every objects

link.setActive(Active.OFF);

Like classes, links have unique identifiers that can be used
to discriminate them. However, our experience with de-
veloping Reflex-based tools tends to show that manipulat-
ing link identifiers is not necessary in most cases: a proper
design will rather make a link reference accessible directly,
or hide it behind application-specific abstractions. For in-
stance, if a logging library is developed with Reflex, a global
service can be provided to activate/deactivate logging or to
change the log level:

Object o = ... ;

// deactivating the link "behind the scene"

Logger.deactivateFor(o);

// changing the metaobject "behind the scene"

Logger.setLevel(o, Logger.VERBOSE);

This principle of hiding link manipulation behind abstrac-
tions that are more adequate for the programmer is at the
essence of the guidelines for metalevel facilities for aspect
languages developed on top of the kernel, discussed in Sec-
tion 3.4.

3.3.3 Structural Correspondence
A major implication of the principle of structural corre-

spondence is that the metalevel should not make synthetic
entities visible. This issue was mentioned previously in the
case of the Java reflection API: synthetic members gener-
ated by the compiler are unfortunately visible via reflection,
whereas they have no relation to the source code; they rather
correspond to some implementation strategy of the compiler,
to allow HLL to provide some constructs not supported by
VML (e.g. generics).

In the context of Reflex, the importance of structural cor-
respondence is exacerbated by the fact that all features are
implemented via bytecode transformation. In other words,
since the execution environment (the VM) is unchanged,
the features of KL are implemented as transformations over
HLL: references to metaobjects are implemented by syn-
thetic fields initialized by synthetic methods, hooks to the
metalevel are implemented by inserting synthetic pieces of
code in method definitions, etc.

All these synthetic elements ought to be invisible at all
stages. First of all, since the definition of a link (e.g. class
selectors) relies on code introspection, synthetic members
and expressions can mislead the programmer’s intention.
Second, at runtime, the reflection API of the HLL (Java)
should not expose these synthetic elements. For the latter,
we already mentioned that the solution lies in a full-fledged
mirror-based runtime reflection API. For the former, our so-
lution is to exploit the benefits of our mirror-based version
of the Javassist load-time MOP (Sect. 3.2.1).

Since our load-time reflection API is based on interfaces,
we are able to provide implementations that are “Reflex-
aware” in the sense that they hide synthetic (read, Reflex-
generated) members and expressions. In other words, we can
ensure that code modifications done during both application
of structural links and installation of behavioral links are not
seen by other links. Furthermore, Reflex provides a means
to make this systematic hiding customizable: through a vis-
ibility protocol, it is possible for a structural link to expose
part of its modifications to either some or all of the other
links (details can be found in [9]).

3.4 Metalevel Facilities for Plugins (ALs)
In Reflex, an aspect language, possibly specific to a partic-

ular domain, is implemented by a plugin [11]. Reflex makes
it possible to manually register plugins, and also supports
automatic detection of available plugins. In our previous
work, we have mainly considered plugins as compile/load-
time facilities: a programmer expresses an aspect in a par-
ticular aspect language, then the plugin implementing this
language is in charge of translating the aspect to the KL.
We hereby aim at providing well-structured APIs for run-
time reflection too.

The translation of an aspect from a given AL to the KL
implies that several synthetic kernel entities (e.g. links) are
generated by the plugin: for instance, a single AspectJ as-
pect is typically implemented by several links in Reflex [8,
11]. To respect the principle of structural correspondence, it



is important that these synthetic entities be hidden to clients
of the KL reflective API.

A plugin should provide mirror factories corresponding to
the language it supports. Separate factories are required
in order to respect temporal correspondence (if it makes
sense for the AL in question), and more generally to support
the different usage scenarios of metalevel facilities (e.g. for
debugging), as discussed in Section 2.2.4.

We now briefly discuss the case of two Reflex plugins,
the AspectJ plugin [8], supporting a subset of the general-
purpose aspect language AspectJ (dynamic crosscutting
and composition) [7], and the SOM plugin, supporting a
lightweight domain-specific aspect language for sequential
object monitors (SOM), an abstraction for concurrent pro-
gramming [3].

3.4.1 Case of SOM
A sequential object monitor (SOM) is an object that is

transparently made thread-safe and for which users can de-
fine custom scheduling strategies. Under the hood, method
invocations on a SOM are reified as requests put in a request
queue until scheduled by a user-defined scheduler. A partic-
ularity of SOM is its efficient thread-less scheduling mech-
anism: a SOM is a passive object collaboratively scheduled
by client threads.

The SOM DSAL makes it possible to declaratively asso-
ciate custom schedulers to instances of specified classes:

schedule: Dictionary with: ReaderPrioritySched

The SOM DSAL is so simple that as of now we have not
felt the need to provide a compile-time reflection API for
it. However, at runtime, it can be interesting to obtain
the scheduler of a particular object, and even to change it.
The SOM plugin hence supports a simple runtime API, that
follows a mirror-based design:

Dictionary d = new Dictionary();

// obtain a SOM mirror on d

SOMMirror m = SOM.reflect(d);

// introspect scheduler of d

Scheduler s = m.getScheduler();

... play with s...

// change the scheduler of d

m.setScheduler(new WriterPrioritySched());

Apart from exposing domain-specific concepts to users at
the metalevel, the SOM reflection API also ensures that
a change of the scheduler is done is a safe manner: the
mirror will only change the scheduler when the monitor is
free of pending requests. Conversely, giving a direct (read,
implementation-level) access to the binding object-scheduler
could easily lead to inconsistencies. This illustrates the fact
that offering domain-specific metalevel facilities has an ad-
vantage beyond the abstraction level offered to program-
mers: it makes it possible to enforce that some domain-
specific properties are respected while performing metalevel
operations.

3.4.2 Case of AspectJ
The AspectJ plugin (AJP) supports a subset of the As-

pectJ language, comprising mainly aspects with pointcuts

and advices, including cflow, advice kinds, proceed and re-
flective join point information.

The standard implementation of AspectJ2 supports re-
flection in a way that respects the design guidelines of
mirrors: all language-specific concepts (aspects, point-
cuts, advices, etc.) are reified as interfaces, instances
are obtained via factories, and the temporal corre-
spondence principle is respected by providing two dif-
ferent reflective APIs, org.aspectj.lang.reflect and
org.aspectj.runtime.reflect.

The current reflective APIs of AspectJ are however lim-
ited. First, only introspective facilities are provided: it could
be interesting to extend them with intercessive facilities,
and to study applications of such new possibilities. Fur-
thermore, the reflective APIs do not support fine-grained
reification: the insides of pointcut expressions are not rei-
fied, nor are advice bodies. Reification of advice bodies
would actually present a challenge in terms of ontological
correspondence since, in the current implementation, spe-
cial variables such as thisJoinPoint or the special proceed
statement are translated at compilation time in plain Java.
The reflective APIs of our AspectJ plugin for Reflex need to
be redesigned in the light of the analysis done in this paper.

3.5 Cross-language Metalevel Facilities
In multi-language AOP, the need for traceability between

AL-level entities and KL-level entities arises: as explained
in [10, 11], traceability is useful for dealing with detection
and resolution of aspect interactions at the appropriate level
of abstraction. For instance, although interactions between
aspects written in different aspect languages are automati-
cally detected by the kernel at the link level, report to the
programmer should be made at the level of the correspond-
ing aspect languages. Furthermore, since KL-level entities
generated by ALs are synthetic, they are hidden from clients
of the KL reflective APIs. However, it can be interesting
to have access to them, e.g. for debugging purposes or for
building IDE support.

This implies that, on the one hand, given a synthetic KL-
level entity, it should be possible to determine the plugin
that defined it, and the AL-level entity it represents; on the
other hand, given an AL-level entity, the set of synthetic
KL-level entities that implement it should be accessible. For
kernel-to-AL navigation, we introduced in Reflex the notion
of a linkset, which makes it possible to embed all synthetic
entities corresponding to a single aspect in one kernel en-
tity [11]. Every link contained in a linkset has a reference to
it, and this connection is used by the kernel when reporting
aspect interactions. Concerning AL-to-kernel navigation, we
have implemented a first approach in AJP, whereby a ded-
icated cross-language mirror factory is used to extract the
kernel-level entities corresponding to an AspectJ aspect:

// obtain mirror for Foo aspect (AspectJ level)

AJAspect foo = AJ.aspect("Foo");

// get cross-language mirror for foo (AJ-to-Reflex)

AJ2RAspect fooImpl = AJ2Reflex.get(foo);

// get all links implementing foo (Reflex level)

Link[] links = fooImpl.getLinks();

2http://eclipse.org/aspectj



cross-language mirror factory

code/computation mirror factories

KL

AL1 ALn

HLL

VML

...

Figure 4: Mirror factories for the different lan-
guages, and cross-language factories.

// get cflow b-links for pointcut bar

AJPoincut pc = foo.getPointcut("bar"); // AJ

AJ2RPoincut pcImpl = AJ2Reflex.get(pc); // AJ2R

BLink[] cflows = pcImpl.getCflowLinks(); // R

Actually, the interest of providing cross-language meta-
level facilities is not restricted to the frontier between ALs
and KL, but would also be profitable for the KL-HLL and
HLL-VML frontiers (Fig. 4). This is even more necessary if
more than one HLL are defined on top of VML. We are not
aware of any language proposing these abilities in the case
of HLL-VML. Strongtalk [1] is the only language that offers
two distinct mirror APIs for HLL and VML, but to the best
of our knowledge, it does not provide any cross-language
API to trace synthetic entities back and forth.

4. DISCUSSION AND PERSPECTIVES
We have explored how the design guidelines formulated by

Bracha and Ungar in their work on mirrors can be applied in
the context of multi-language AOP. We have identified that
each aspect language should provide its own reflective API in
the form of various mirror factories, according to the differ-
ent usage scenarios of reflection. We have then gone through
the case of the Reflex kernel for multi-language AOP in Java.
This study has revealed that the Reflex kernel is globally
compatible with the advocated design guidelines, but that
(a) a full-fledged mirror-based API for runtime reflection in
Java is required in order to be completely consistent, and
(b) the metalevel facilities of our AspectJ plugin for Reflex

are too ad-hoc and need to be re-designed in the light of
this study. Finally, we have identified the interest of cross-
language mirror factories, which should be studied further.
Another possible alternative for future work lies in easying
the task of providing mirror factories for aspect languages.
Indeed, a major interest of multi-language AOP consists of
being able to define one’s own aspect languages; since mir-
rors reify the concepts of a language, it can be interesting
to see how a model-driven approach to aspect language def-
inition can help in generating both parsers and appropriate
mirror interfaces and factories.

5. REFERENCES
[1] G. Bracha and D. Griswold. Strongtalk: Typechecking

Smalltalk in a production environment. In Proceedings
of the 8th International Conference on
Object-Oriented Programming Systems, Languages and
Applications (OOPSLA 95), pages 215–230,
Washington, D.C., USA, Oct. 1993. ACM Press. ACM
SIGPLAN Notices, 28(10).

[2] G. Bracha and D. Ungar. Mirrors: Design principles
for meta-level facilities of object-oriented programming
languages. In Proceedings of the 19th ACM SIGPLAN
Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA 2003), pages
331–344, Vancouver, British Columbia, Canada, Oct.
2004. ACM Press. ACM SIGPLAN Notices, 39(11).

[3] D. Caromel, L. Mateu, and É. Tanter. Sequential
object monitors. In M. Odersky, editor, Proceedings of
the 18th European Conference on Object-Oriented
Programming (ECOOP 2004), number 3086 in
Lecture Notes in Computer Science, pages 316–340,
Oslo, Norway, June 2004. Springer-Verlag.

[4] S. Chiba. Macro processing in object-oriented
languages. In Proceedings of Technology of
Object-Oriented Languages and Systems (TOOLS
Pacific ’98), pages 113–126, Australia, November
1998. IEEE Computer Society Press.

[5] S. Chiba. Load-time structural reflection in Java. In
E. Bertino, editor, Proceedings of the 14th European
Conference on Object-Oriented Programming
(ECOOP 2000), number 1850 in Lecture Notes in
Computer Science, pages 313–336, Sophia Antipolis
and Cannes, France, June 2000. Springer-Verlag.

[6] S. Chiba and M. Nishizawa. An easy-to-use toolkit for
efficient Java bytecode translators. In F. Pfenning and
Y. Smaragdakis, editors, Proceedings of the 2nd ACM
SIGPLAN/SIGSOFT Conference on Generative
Programming and Component Engineering (GPCE
2003), volume 2830 of Lecture Notes in Computer
Science, pages 364–376, Erfurt, Germany, Sept. 2003.
Springer-Verlag.

[7] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. Griswold. An overview of AspectJ. In
J. L. Knudsen, editor, Proceedings of the 15th
European Conference on Object-Oriented
Programming (ECOOP 2001), number 2072 in
Lecture Notes in Computer Science, pages 327–353,
Budapest, Hungary, June 2001. Springer-Verlag.

[8] L. Rodŕıguez, É. Tanter, and J. Noyé. Supporting
dynamic crosscutting with partial behavioral
reflection: a case study. In Proceedings of the XXIV



International Conference of the Chilean Computer
Science Society (SCCC 2004), Arica, Chile, Nov.
2004. IEEE Computer Society Press.

[9] É. Tanter. From Metaobject Protocols to Versatile
Kernels for Aspect-Oriented Programming. PhD
thesis, University of Nantes and University of Chile,
Nov. 2004.

[10] É. Tanter and J. Noyé. Motivation and requirements
for a versatile AOP kernel. In 1st European Interactive
Workshop on Aspects in Software (EIWAS 2004),
Berlin, Germany, Sept. 2004.

[11] É. Tanter and J. Noyé. A versatile kernel for
multi-language AOP. In Proceedings of the 4th ACM
SIGPLAN/SIGSOFT Conference on Generative
Programming and Component Engineering (GPCE
2005), Lecture Notes in Computer Science, Tallin,
Estonia, Sept. 2005. Springer-Verlag. To appear.

[12] É. Tanter, J. Noyé, D. Caromel, and P. Cointe. Partial
behavioral reflection: Spatial and temporal selection
of reification. In R. Crocker and G. L. Steele, Jr.,
editors, Proceedings of the 18th ACM SIGPLAN
Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA 2003), pages
27–46, Anaheim, CA, USA, Oct. 2003. ACM Press.
ACM SIGPLAN Notices, 38(11).

[13] D. Ungar and R. B. Smith. Self: The power of
simplicity. In N. Meyrowitz, editor, Proceedings of the
2nd International Conference on Object-Oriented
Programming Systems, Languages and Applications
(OOPSLA 87), pages 227–241, Orlando, Florida,
USA, Oct. 1987. ACM Press. ACM SIGPLAN
Notices, 22(12).


